Lt304888.ru

Туристические услуги

Интрон

18-10-2023

Перейти к: навигация, поиск

Интрон — участок ДНК, который является частью гена, но не содержит информации о последовательности аминокислот белка.

Схема нуклеотидной последовательности пре-мРНК гена CDK4 человека. Большую часть последовательности занимают интроны (показаны серым цветом)‎

После транскрипции последовательности нуклеотидов, соответствующие интронам, вырезаются из незрелой мРНК (пре-мРНК) в процессе сплайсинга. Интроны характерны для генов эукариот. Интроны также найдены в генах, кодирующих рибосомальные РНК (рРНК), транспортные РНК (тРНК) и некоторые белки прокариот, эти интроны вырезаются на уровне РНК за счёт автосплайсинга. Число и длина интронов очень различны в разных видах и среди разных генов одного организма. Например, геном дрожжей Saccharomyces cerevisiae содержит в целом 293 интрона, в то время как в человеческом геноме можно насчитать свыше 300 тысяч интронов[1]. Обычно интроны длиннее экзонов[2].

Классификация интронов

Существует четыре группы интронов:

  • Ядерные интроны
  • Интроны группы I
  • Интроны группы II
  • Интроны группы III

Иногда интроны группы III также относят к группе II, потому что они похожи по структуре и функции.

Ядерные, или сплайсосомные интроны подвергаются сплайсингу при помощи сплайсосомы и малых ядерных РНК (snRNA). В последовательности РНК, содержащей ядерные интроны, есть специальные сигнальные последовательности, которые узнаются сплайсосомой.

Интроны I, II и III группы способны к автосплайсингу и встречаются реже, чем сплайсосомные интроны. Интроны II и III группы похожи друг на друга и обладают консервативной вторичной структурой. Они обладают свойствами, похожими на свойства сплайсосомы и, вероятно, являются её эволюционными предшественниками. Интроны I группы, которые встречаются у бактерий, животных и простейших — единственный класс интронов, который требует присутствие несвязанного гуанилового нуклеотида. Их вторичная структура отличается от вторичной структуры интронов II и III группы.

Эволюция

Существуют две альтернативные теории, объясняющие происхождение и эволюцию сплайсосомных интронов: так называемые теории ранних интронов (РИ) и поздних интронов (ПИ). Теория РИ утверждает, что многочисленные интроны присутствовали в общих предках эу- и прокариот и, соответственно, интроны являются очень старыми структурами. Согласно этой модели, интроны были потеряны из генома прокариот. Также она предполагает, что ранние интроны способствовали рекомбинации экзонов, представляющих домены белков. ПИ утверждает, что интроны появились в генах относительно недавно и были инсертированы (вставлены) в геном после разделения организмов на про- и эукариоты. Эта модель основывается на наблюдении, что сплайсосомные интроны есть только у эукариот.

Идентификация

Почти все эукариотические ядерные интроны начинаются с GU и оканчиваются AG (правило AG-GU).

Примечания

  1. Геномы/Пер. с англ. = Genomes. — М.-Ижевск: Институт компьютерных исследований, 2011. — 944 с. — ISBN 978-5-4344-0002-2.
  2. Нуклеиновые кислоты: от А до Я / Б. Аппель [и др.]. — М.: Бином: Лаборатория знаний, 2013. — 413 с. — 700 экз. — ISBN 978-5-9963-0376-2.

Литература

  • Gilbert, Walter (1978): Why genes in pieces. Nature 271(5645): 501. 10.1038/271501a0
  • Roy, Scott William & Walter Gilbert (2006): The evolution of spliceosomal introns: patterns, puzzles and progress. PDF fulltext
  • Gogarten, J. Peter & Hilario, Elena (2006): Inteins, introns, and homing endonucleases: recent revelations about the life cycle of parasitic genetic elements. BioMed Central|BMC Evolutionary Biology 6: 94 PDF fulltext
  • Yandell, Mark; Mungall, Chris J.; Smith, Chris; Prochnik, Simon; Kaminker, Joshua; Hartzell, George; Lewis, Suzanna & Rubin, Gerald M. (2006): Large-Scale Trends in the Evolution of Gene Structures within 11 Animal Genomes. |PLoS Comput. Biol.' 2(3): 113—125. PDF fulltext Supporting Information

См. также


Интрон.

© 2020–2023 lt304888.ru, Россия, Волжский, ул. Больничная 49, +7 (8443) 85-29-01