Lt304888.ru

Туристические услуги

Поток Риччи

23-10-2023

Поток Риччи — система дифференциальных уравнений в частных производных, описывающая деформацию римановой метрики на многообразии.

Эта система является нелинейным аналогом уравнения теплопроводности.

Название дано в честь итальянского математика Риччи-Курбастро.

Содержание

Уравнение

Уравнение потока Риччи имеет вид:[1]

где обозначает однопараметрическое семейство римановых метрик на полном многообразии (зависящая от вещественного параметра ), и  — её тензор Риччи.

Свойства

  • Формально говоря, система уравнений , задаваемая потоком Риччи, не является параболическим уравнением. Тем не менее, существует параболическая система уравнений , такая, что если риманова метрика на компактном многообразии и ,  — решения систем и , то изометрично для всех .
  • Аналогично уравнению теплопроводности (и прочим параболическим уравнениям), задав произвольные начальные условия при , можно получить решения лишь в одну сторону по , а именно .
  • В отличие от решений уравнения теплопроводности, поток Риччи, как правило, не продолжается неограниченно при . Решение продолжается на максимальный интервал , при приближении к в решении формируется сингулярность. Именно на исследовании сингулярностей, в которые упираются потоки Риччи, и было основано доказательство гипотезы Тёрстона.

История

Начало исследованию потока Риччи было положено Гамильтоном в начале 1980-x.[1]

Используя поток Риччи, в 2002 году Перельману удалось доказать гипотезу Тёрстона, проведя тем самым полную классификацию компактных трёхмерных многообразий, и доказать гипотезу Пуанкаре.[2]

Примечания

  1. ↑ Ricci Flow — from Wolfram MathWorld
  2. http://www.claymath.org/library/monographs/cmim03.pdf «This conjecture was formulated by Henri Poincaré [58] in 1904 and has remained open until the recent work of Perelman. … Perelman’s arguments rest on a foundation built by Richard Hamilton with his study of the Ricci flow equation for Riemannian metrics.».

Литература

  • Hamilton, R. S. Three Manifolds with Positive Ricci Curvature // J. Diff. Geom. 17, 255—306, 1982.
  • Hamilton, R. S. Four Manifolds with Positive Curvature Operator // J. Diff. Geom. 24, 153—179, 1986.


Поток Риччи.

© 2020–2023 lt304888.ru, Россия, Волжский, ул. Больничная 49, +7 (8443) 85-29-01