Lt304888.ru

Туристические услуги

Уравнение Власова

25-07-2023

Уравнение Власова — система уравнений, описывающих динамику плазмы заряженных частиц с учётом дальнодействующих кулоновских сил посредством самосогласованного поля. Впервые предложена А. А. Власовым в статье[1] и позднее излагается в монографии[2].

Содержание

Проблемы газокинетического подхода

В своей работе Власов сначала указывает на неприменимость газокинетического подхода, основанного на уравнении Больцмана (предполагается, что интеграл столкновений зависит только от парных столкновений), к описанию динамики плазмы с кулоновским взаимодействием. Он отмечает следующие проблемы, возникающие при попытке применения теории основанной на парных столкновений к описанию плазмы:

  1. приближение парных столкновений не согласуется с исследованиями Рэлея и Ленгмюра и Тонкса, которые предсказали и исследовали ленгмюровские волны в электронной газовой плазме.[3][4]
  2. приближение парных столкновений формально не применима к кулоновскому взаимодействию из-за расходимости полного сечения рассеивания.
  3. приближение парных столкновений не позволяет объяснить эксперименты Меррилла и Вебба об аномальном рассеянии электронов в газовой плазме.[5]

В качестве причины возникновения этих проблем Власов указывает на дальнодействующий характер кулоновских сил, что приводит к взаимодействию каждой из частиц с совокупностью других частиц. Дальнодействие в этом случае означает, что радиус влияния этой силы больше чем среднее расстояние между частицами.

Уравнения Власова — Максвелла

Власов изначально рассматривал систему общих уравнений плазмы, включающих три компоненты (электроны, ионы и нейтральные атомы), и записывал уравнение Больцмана для s-ой компоненты плазмы в виде

\frac{\partial f_s}{\partial t}  + \mathrm{div}_{\mathbf{r}}\vec{v} f_s +\frac{e_s}{m_s}\left(\vec{E}+\frac{1}{c}[\vec{v},\vec{B}]\right)\mathrm{grad}_{\mathbf{v}}f_s  = \left[\frac{\partial f_s}{\partial t}\right]^{st}_{s1}+\left[\frac{\partial f_s}{\partial t}\right]^{st}_{s2}+\left[\frac{\partial f_s}{\partial t}\right]^{st}_{s3}.

где  — функция распределения. Эта система уравнений включала также уравнения Максвелла, и уравнения для заряда и тока выраженные через функции распределения . Так как Власов интересовался только волновыми решениями, то он пренебрёг вкладами интегралов столкновений, поскольку по оценкам выходило, что частоты плазменных волн много больше частот парных столкновений частиц в плазме. То есть вместо описания взаимодействия заряженных частиц в плазме посредством столкновений, предложил использовать самосогласованное поле, созданное заряженными частицами плазмы для описания длиннодействующего потенциала. Вместо уравнения Больцмана Власов предлагает использовать следующую систему уравнений для описания заряженных компонент плазмы (электронов с функцией распределений и положительных ионов с функцией распределения ):

\frac{\partial f_e}{\partial t}  + \vec{v} \frac{\partial f_e}{\partial\vec{x}} - e\Bigl(\vec{E}+\frac{1}{c}[\vec{v},\vec{B}]\Bigr) \frac{\partial f_e}{\partial\vec{p}} = 0

\frac{\partial f_i}{\partial t}  + \vec{v} \frac{\partial f_i}{\partial \vec{x}} + e\Bigl(\vec{E}+\frac{1}{c}[\vec{v},\vec{B}]\Bigr) \frac{\partial f_i}{\partial \vec{p}} = 0

{\rm rot}\vec{B}=\frac{4\pi\vec{j}}{c}+\frac{1}{c}\frac{\partial\vec{E}}{\partial t},\quad {\rm rot}\vec{E}=-\frac{1}{c}\frac{\partial\vec{B}}{\partial t}

{\rm div}\vec{E}=4\pi\rho,\quad {\rm div}\vec{B}=0

\rho=e\int(f_i-f_e)d^3\vec{p},\quad \vec{j}=e\int(f_i-f_e)\vec{v}d^3\vec{p}

Здесь  — заряд электрона,  — скорость света, и  — самосогласованные электрическое и магнитное поля, созданные в точке в момент времени всеми заряженными частицами плазмы. Существенное отличие этой системы уравнений от уравнений движения заряженных частиц во внешнем электромагнитном поле в том, что само самосогласованное электромагнитное поле сложным образом зависит от функций распределения ионов и электронов.

Уравнения Власова — Пуассона

Уравнения Власова — Максвелла являются системой нелинейных интегро-дифференциальных уравнений. Если флуктуации функций распределения относительно равновесного состояния невелики, эта система уравнений может быть линеаризована. Линеаризация даст систему уравнений Власова — Пуассона, описывающую динамику плазмы в самосогласованном электростатическом поле. Уравнения Власова — Пуассона являются системой уравнений Власова для каждой компоненты плазмы (рассматриваем нерелятивистский предел):

и уравнения Пуассона для самосогласованного электрического поля:

Здесь  — электрический заряд и  — масса частиц плазмы,  — самосогласованное электрическое поле,  — потенциал самосогласованного электрического поля и  — плотность электрического заряда.

Примечания

  1. О вибрационных свойствах электронного газа // Журнал экспериментальной и теоретической физики. — 1938. — Т. 8 (3). — С. 291.
  2. А. А. Власов. Теория вибрационных свойств электронного газа и ее приложения // Уч. зап. МГУ. — 1945. — В. 75. Кн. 2. Ч. 1.
  3. Rayleigh , Phil. Mag. 11, 117 (1906).
  4. I. Langmuir and L. Τοnks, Phys. Rev 33, 195 (1929).
  5. 10.1103/PhysRev.55.1191. 1939PhRv...55.1191M.

Литература

  • И. П. Базаров, П. Н. Николаев. Анатолий Александрович Власов. — Физический факультет МГУ. — М., 1999. — С. 19—26. — (Выдающиеся учёные физического факультета МГУ). — Подробное обсуждение уравнений Власова.

Уравнение Власова.

© 2020–2023 lt304888.ru, Россия, Волжский, ул. Больничная 49, +7 (8443) 85-29-01