Lt304888.ru

Туристические услуги

Легчайшая суперсимметричная частица

15-07-2023

Перейти к: навигация, поиск
Состав Вселенной по данным WMAP

Тёмная материя в астрономии и космологии, а также в теоретической физике — гипотетическая форма материи, которая не испускает электромагнитного излучения и не взаимодействует с ним[1]. Это свойство данной формы вещества делает невозможным её прямое наблюдение.

Вывод о существовании тёмной материи сделан на основании многочисленных, согласующихся друг с другом, но косвенных признаков поведения астрофизических объектов и по создаваемым ими гравитационным эффектам. Обнаружение природы тёмной материи поможет решить проблему скрытой массы, которая, в частности, заключается в аномально высокой скорости вращения внешних областей галактик[2].

История

В истории науки встречались ситуации, когда движение небесных тел не подчинялось законам небесной механики; как правило, это явление находило объяснение в существовании неизвестного материального тела (или нескольких тел). Именно так были открыты планета Нептун и Сириус B. В 1922 году астрономы Джеймс Джинс и Якобус Каптейн исследовали движение звёзд в нашей Галактике и пришли к выводу, что бо́льшая часть вещества в галактике невидима; в этих работах, вероятно, впервые появился термин «тёмная материя» (англ. dark matter)[3]. Ян Оорт использовал тот же термин в статье 1932 года[4].

Кривая вращения галактики: (A) ожидаемая; (B) реальная

Широкое распространение термин получил после работ Фрица Цвикки, который употребил его в 1933 году в своей работе[5][6]. Цвикки измерил радиальные скорости восьми галактик в скоплении Кома (созвездие Волосы Вероники) и обнаружил, что для устойчивости скопления приходится предположить, что его полная масса в десятки раз больше, чем масса входящих в него звёзд. Вскоре другие астрономы пришли к таким же выводам для многих других галактик. Особенный интерес вызвала туманность Андромеды (Хорес Бэбкок, 1939) — скорость вращения звёзд вокруг её центра не уменьшалась, как предсказывала небесная механика, обратно пропорционально (где — расстояние до центра), а оставалась почти постоянной (см. рисунок). Это могло означать, что галактика на всём своём протяжении содержит значительную массу невидимого вещества («галактическое гало»). Данный эффект был также подтверждён для большинства исследованных галактик[3].

Начиная с 1960-х годов, когда начался бурный прогресс наблюдательных средств астрономии, число аргументов в пользу существования тёмной материи быстро росло. При этом оценки её параметров, полученные из разных источников и разными методами, в целом согласуются между собой[3].

  1. Описанное выше неубывание скорости вращения звёзд оказалось не аномалией, а типичной ситуацией в мире галактик.
  2. При исследовании движения спутников галактик и близко расположенных шаровых скоплений было подтверждено, что общая масса каждой галактики в несколько раз превышает массу её звёзд.
  3. Было проведено изучение движения в системах двойных галактик и в галактических скоплениях. Оказалось, что в этих масштабах доля тёмной материи намного выше, чем внутри галактик.
  4. Звёздная масса эллиптических галактик, согласно расчётам, недостаточна для удержания входящего в галактику горячего газа, если не учесть тёмную материю.
  5. Оценка массы скоплений галактик, осуществляющих гравитационное линзирование, даёт результаты, включающие вклад тёмной материи и близкие к полученным другими методами.

Данные наблюдений

Известно, что тёмное вещество взаимодействует со «светящимся» (барионным), по крайней мере, гравитационным образом и представляет собой среду со средней космологической плотностью, в несколько раз превышающей плотность барионов. Последние захватываются в гравитационные ямы концентраций тёмной материи. Поэтому, хотя частицы тёмной материи и не взаимодействуют со светом, свет испускается оттуда, где есть тёмное вещество. Это замечательное свойство гравитационной неустойчивости сделало возможным изучение количества, состояния и распределения тёмной материи по наблюдательным данным от радиодиапазона до рентгеновского излучения.[7]

Опубликованное в 2012 году исследование движения более 400 звёзд, расположенных на расстояниях до 13 000 световых лет от Солнца, не нашло свидетельств присутствия тёмной материи в большом объёме пространства вокруг Солнца. Согласно предсказаниям теорий, среднее количество тёмной материи в окрестности Солнца должно было составить примерно 0,5 кг в объёме Земного шара. Однако измерения дали значение 0,00±0,06 кг тёмной материи в этом объёме. Это означает, что попытки зарегистрировать тёмную материю на Земле, например, при редких взаимодействиях частиц тёмной материи с «обычной» материей, вряд ли могут быть успешными[8][9][10].

Согласно опубликованным в марте 2013 года данным наблюдений космической обсерватории «Планк», интерпретированным с учётом стандартной космологической модели Лямбда-CDM, общая масса-энергия наблюдаемой Вселенной состоит на 4,9 % из обычной (барионной) материи, на 26,8 % из тёмной материи и на 68,3 % из тёмной энергии.[11][12] Таким образом, Вселенная на 95,1 % состоит из тёмной материи и тёмной энергии.[13]

Кандидаты на роль тёмной материи

Барионная тёмная материя

Наиболее естественным кажется предположение, что тёмная материя состоит из обычного, барионного вещества, по каким-либо причинам слабо взаимодействующего электромагнитным образом и потому не обнаружимого при исследовании, к примеру, линий излучения и поглощения. В состав тёмного вещества могут входить многие уже обнаруженные космические объекты, как то: тёмные галактические гало, коричневые карлики и массивные планеты, компактные объекты на конечных стадиях эволюции: белые карлики, нейтронные звёзды, чёрные дыры. Кроме того, такие гипотетические объекты, как кварковые звёзды, Q-звёзды и преонные звёзды также могут являться частью барионной тёмной материи.

Проблемы такого подхода проявляются в космологии Большого взрыва: если вся тёмная материя представлена барионами, то соотношение концентраций лёгких элементов после первичного нуклеосинтеза, наблюдаемое в самых старых астрономических объектах, должно быть другим, резко отличающимся от наблюдаемого. Кроме того, эксперименты по поиску гравитационного линзирования света звёзд нашей Галактики показывают, что достаточной концентрации крупных гравитирующих объектов типа планет или чёрных дыр для объяснения массы гало нашей Галактики не наблюдается, а мелкие объекты достаточной концентрации должны слишком сильно поглощать свет звёзд.

Небарионная тёмная материя

Теоретические модели предоставляют большой выбор возможных кандидатов на роль небарионной невидимой материи. Перечислим некоторые из них.

Лёгкие нейтрино

В отличие от остальных кандидатов, нейтрино обладают явным преимуществом: известно, что они существуют. Поскольку число нейтрино во Вселенной сравнимо с числом фотонов, то, обладая даже малой массой, нейтрино вполне могут определять динамику Вселенной. Для достижения , где  — так называемая критическая плотность , необходимы нейтринные массы порядка эВ, где обозначает число типов лёгких нейтрино. Эксперименты, проводимые на сегодняшний день, дают оценку масс нейтрино порядка эВ. Таким образом, лёгкие нейтрино практически исключаются в качестве кандидата на доминирующую фракцию тёмной материи.

Тяжёлые нейтрино

Из данных о ширине распада Z-бозона следует, что число поколений слабо взаимодействующих частиц (в том числе нейтрино) равно 3. Таким образом, тяжёлые нейтрино (по крайней мере, с массой менее 45 ГэВ) с необходимостью являются так называемыми «стерильными», то есть не взаимодействующими слабым образом частицами. Теоретические модели предсказывают массу в очень широком диапазоне значений (в зависимости от природы этого нейтрино). Из феноменологии для следует диапазон масс приблизительно эВ, таким образом, стерильные нейтрино вполне могут составлять существенную часть тёмной материи.

Аксионы

Аксионы представляют собой гипотетические нейтральные псевдоскалярные частицы, введённые для решения проблемы сильного CP-нарушения в квантовой хромодинамике. Хотя считается, что аксионы должны быть очень лёгкими, они могут составлять существенную часть холодной тёмной материи. Космологические данные ограничивают массу аксиона на уровне не менее 10−5 эВ, иначе слишком много вещества было бы представлено аксионами.[14]

Суперсимметричные частицы

См. также: Легчайшая суперсимметричная частица (англ. Lightest Supersymmetric Particle, LSP)

В рамках суперсимметричных (SUSY) теорий существует по меньшей мере одна стабильная частица, которая является новым кандидатом на роль тёмной материи. Предполагается, что эта частица (LSP) не принимает участия в электромагнитном и сильном взаимодействиях. В качестве LSP-частицы могут выступать фотино, гравитино, хиггсино (суперпартнёры фотона, гравитона и бозона Хиггса соответственно), а также снейтрино, вино, и зино. В большинстве теорий LSP-частица представляет собой комбинацию перечисленных выше SUSY-частиц с массой порядка 10 ГэВ.

Космионы

Космионы были введены в физику для разрешения проблемы солнечных нейтрино, состоящей в существенном отличии потока нейтрино, детектируемых на Земле, от значения, предсказываемого стандартной моделью Солнца. Однако эта проблема нашла разрешение в рамках теории нейтринных осцилляций и эффекта Михеева — Смирнова — Вольфенштейна, так что космионы, по всей видимости, исключаются из претендентов на роль тёмной материи.

Топологические дефекты пространства-времени

Согласно современным космологическим представлениям, энергия вакуума определяется неким локально однородным и изотропным скалярным полем. Это поле необходимо для описания так называемых фазовых переходов вакуума при расширении Вселенной, во время которых происходило последовательное нарушение симметрии, приводящее к разъединению фундаментальных взаимодействий. Фазовый переход — это скачок энергии вакуумного поля, стремящегося к своему основному состоянию (состоянию с минимальной энергией при данной температуре). Различные области пространства могли испытывать такой переход независимо, в результате чего образовывались области с определённой «выстроенностью» скалярного поля, которые, расширяясь, могли войти в соприкосновение друг с другом. В точках встречи областей с различной ориентацией могли образоваться стабильные топологические дефекты различной конфигурации: точечно-подобные частицы (в частности, магнитные монополи), линейные протяжённые объекты (космические струны), двумерные мембраны (доменные стенки), трёхмерные дефекты (текстуры). Все эти объекты обладают, как правило, колоссальной массой и могли бы давать доминирующий вклад в тёмную материю. На текущий момент (2012 год) подобные объекты во Вселенной не обнаружены.

Классификация тёмной материи

Ключевое предположение приводимой ниже классификации состоит в том, что частицы ТМ находились в термодинамическом равновесии с частицами космической плазмы на ранних стадиях эволюции Вселенной. В определённый момент времени температура упала настолько, что среднее время пролёта частиц ТМ в плазме превысило хаббловское (реакция «заморозилась»), и взаимодействия с барионным веществом прекратились. В зависимости от температуры, при которой это произошло, ТМ делят на «горячую», «холодную» и «тёплую».

Горячая тёмная материя

Если в момент выхода из равновесия энергия частиц много превышала их массу, ТМ называют горячей. Такими могли бы быть лёгкие частицы типа нейтрино, но космологические данные исключают возможность того, что последние составляют значительную долю ТМ.

Холодная тёмная материя

Если частицы ТМ отщепились от космической плазмы уже будучи нерелятивистскими, такую ТМ называют «холодной». Она наиболее предпочтительна с точки зрения космологии, так как частицы горячей ТМ при движении с релятивистскими скоростями разглаживали бы неоднородности плотности материи на масштабах порядка хаббловского в ту эпоху и, таким образом, препятствовали бы образованию крупномасштабных структур, что противоречит наблюдательным данным. Фактически, поведение частиц уже с массами ≥30 КэВ обнаруживает все свойства холодной ТМ. К числу кандидатов на роль частиц холодной ТМ относится в первую очередь класс частиц, называемых вимпами (WIMP — weakly interacting massive particle), чья масса варьируется от нескольких десятков ГэВ до нескольких ТэВ, а сечения аннигиляции и рассеяния на частицах барионного вещества сравнимы с сечениями слабых процессов. Преимущество вимпов в том, что их остаточная концентрация естественным образом даёт нужный вклад в баланс энергии в современной Вселенной, а величина взаимодействий с частицами барионного вещества делает возможным их прямое обнаружение. Чаще всего на роль вимпа предлагается легчайшая (и, таким образом, стабильная) частица суперсимметричного расширения Стандартной модели, являющаяся суперпозицией суперпартнёров калибровочных и хиггсовских бозонов.

Тёплая тёмная материя

Тёплой называют ТМ, составленную из частиц массой больше или порядка 1 эВ. Естественно, они были релятивистскими в момент выхода из равновесия. В отдельный вид ТМ эти частицы выделяют потому, что горячая ТМ является релятивистской на момент перехода от радиационно-доминированной к пылевидной стадии расширения Вселенной (который случился при температурах порядка 1 эВ), а тёплая уже не является. Это важно, поскольку рост возмущений плотности происходит существенно по-разному на этих стадиях, и этот рост существенно зависит от того, является ли ТМ релятивистской или нет на пылевидной стадии. Хорошим кандидатом на роль тёплой ТМ являются так называемые стерильные нейтрино — правовинтовые состояния, синглетные по группе калибровочных бозонов Стандартной модели. Так, в модели νMSM, расширяющей Стандартную модель за счёт включения трёх стерильных нейтрино, одно из них может иметь массу порядка 1 кэВ/c² и являться, таким образом, кандидатом в ТМ. Другим кандидатом может являться LSP-гравитино из суперсимметричного расширения СМ.

Обнаружение

Основная трудность при поиске частиц тёмной материи заключается в том, что все они электрически нейтральны. Имеются два варианта поиска: прямой и косвенный. При прямом поиске изучаются следствия взаимодействия этих частиц с электронами или атомными ядрами с помощью наземной аппаратуры. Косвенные методы основаны на попытках обнаружения потоков вторичных частиц, которые возникают, например, благодаря аннигиляции солнечной или галактической тёмной материи.

Непосредственное изучение распределения тёмной материи в скоплениях галактик стало возможным после получения их высокодетализированных изображений в 1990-х годах. При этом изображения более удалённых галактик, проецирующихся на скопление, оказываются искажёнными или даже расщепляются из-за эффекта гравитационного линзирования. По характеру этих искажений становится возможным восстановить распределение и величину массы внутри скопления независимо от наблюдений галактик самого скопления. Таким образом, прямым методом подтверждается[уточнить] наличие скрытой массы и тёмной материи в галактических скоплениях.[15][16]

Эксперимент EDELWEISS направлен на прямое обнаружение частиц WIMP. В качестве мишени служат полупроводниковые детекторы, охлаждённые до температуры в несколько мК.[источник не указан 515 дней]

Для поиска тёмной материи на чилийском телескопе им. Виктора Бланко была установлена мощная обзорная камера DECam (Dark Energy Camera) с разрешением в 570 мегапикселей[17].

Альтернативные теории

В массовой культуре

  • В серии игр «Mass Effect» тёмная материя и тёмная энергия в форме так называемого «Нулевого элемента» необходимы для движения со сверхсветовыми скоростями. Некоторые люди, биотики, используя тёмную энергию, могут контролировать поля эффекта массы.
  • В мультсериале «Футурама» тёмная материя - "Чернуха" - используется в качестве топлива для космического корабля компании «Межпланетный экспресс». Появляется материя на свет в виде испражнений инопланетной расы «зубастильонцы» и по плотности крайне велика.
  • В игре Quake 4 есть оружие Dark Matter Gun (генератор тёмной материи в некоторых русификациях) в качестве боеприпасов использует тёмную энергию которую преобразовывает в миниатюрные чёрные дыры

См. также

Примечания

  1. Астрономы впервые «увидели» частицы-кандидаты тёмной материи.
  2. Детектор МКС обнаружил возможные следы темной материи
  3. 1 2 3 Решетников В. Почему небо тёмное. Как устроена Вселенная. Глава 2.5. Скрытая масса во Вселенной. — Фрязино: Век 2, 2012. — ISBN 978-5-85099-189-0.
  4. Oort, J. H., 1932. The force exerted by the stellar system in the direction perpendicular to the galactic plane and some related problems. Bull. Astron. Inst. Netherlands 6, 249.
  5. Zwicky, F., 1933. Die Rotverschiebung von extragalaktischen Nebeln. Helvetica Physica Acta 6, 110—127
  6. 1312.0105
  7. Dodelson, Scott. Ch. 7. Inhomogeneities // Modern Cosmology. — Academic Press, 2003. — P. 208—209. — ISBN 978-0-12-219141-1.
  8. Kinematical and chemical vertical structure of the Galactic thick disk. II. A lack of dark matter in the solar neighborhood (англ.) // The Astrophysical Journal. — 2012.
  9. Serious Blow to Dark Matter Theories?
  10. В окрестностях Солнца тёмной материи не обнаружено // Inforigin, 19.04.12
  11. Planck 2013 results. I. Overview of products and scientific results – Table 9». 2013arXiv1303.5062P.
  12. First Planck results: the Universe is still weird and interesting. Arstechnica (22 March 2013).
  13. Planck captures portrait of the young Universe, revealing earliest light. University of Cambridge (21 March 2013). Проверено 21 марта 2013.
  14. Г. В. Клапдор-Клайнгротхаус, А. Штаудт Неускорительная физика элементарных частиц. — М.: Наука, 1997. — 528 с. — ISBN 5-02-015092-4.
  15. 10.1086/508162 — 2006ApJ...648L.109C — astro-ph/0608407
  16. Конец Вселенной (с 35 мин. — наблюдаемое гравитационное линзирование)
  17. Камера DECam, охотящаяся за темной материей, делает первые снимки глубин космоса

Литература

  • Сайт Modern Cosmology, содержащий в том числе подборку материалов по тёмной материи.
  • Клапдор-Клайнгротхаус Г. В., Штаудт А. Неускорительная физика элементарных частиц. М.: Наука, Физматлит, 1997.
  • Алексей Левин Дело ясное, что дело тёмное // Популярная механика, № 6, 2014. С. 36-40.

Ссылки

  • Биленький С. М. Массы, смешивание и осцилляции нейтрино, УФН 173 1171—1186 (2003).
  • Лукаш В. Н., Михеева Е. В. Тёмная материя: от начальных условий до образования структуры Вселенной, УФН 177 1023—1028 (2007).
  • н/п д/ф «За пределами тьмы» из цикла Сквозь кротовую нору с Морганом Фрименом (видео).
  • «Новые формы материи во Вселенной, ч. 1» — Тёмная масса и тёмная энергия, из цикла лекций «ACADEMIA» (видео).


Легчайшая суперсимметричная частица.

© 2020–2023 lt304888.ru, Россия, Волжский, ул. Больничная 49, +7 (8443) 85-29-01