Lt304888.ru

Туристические услуги

Рибонуклеиновые кислоты

17-05-2023

Пре-мРНК со стеблем-петлёй. Атомы азота в основаниях выделены голубым, кислорода в фосфатном остове молекулы — красным

Рибонуклеи́новая кисло́та (РНК) — одна из трёх основных макромолекул (две другие — ДНК и белки), которые содержатся в клетках всех живых организмов.

Так же, как ДНК (дезоксирибонуклеиновая кислота), РНК состоит из длинной цепи, в которой каждое звено называется нуклеотидом. Каждый нуклеотид состоит из азотистого основания, сахара рибозы и фосфатной группы. Последовательность нуклеотидов позволяет РНК кодировать генетическую информацию. Все клеточные организмы используют РНК (мРНК) для программирования синтеза белков.

Клеточные РНК образуются в ходе процесса, называемого транскрипцией, то есть синтеза РНК на матрице ДНК, осуществляемого специальными ферментами — РНК-полимеразами. Затем матричные РНК (мРНК) принимают участие в процессе, называемом трансляцией. Трансляция — это синтез белка на матрице мРНК при участии рибосом. Другие РНК после транскрипции подвергаются химическим модификациям, и после образования вторичной и третичной структур выполняют функции, зависящие от типа РНК.

Для одноцепочечных РНК характерны разнообразные пространственные структуры, в которых часть нуклеотидов одной и той же цепи спарены между собой. Некоторые высокоструктурированные РНК принимают участие в синтезе белка клетки, например, транспортные РНК служат для узнавания кодонов и доставки соответствующих аминокислот к месту синтеза белка, а рибосомные РНК служат структурной и каталитической основой рибосом.

Однако функции РНК в современных клетках не ограничиваются их ролью в трансляции. Так, малые ядерные РНК принимают участие в сплайсинге эукариотических матричных РНК и других процессах.

Помимо того, что молекулы РНК входят в состав некоторых ферментов (например, теломеразы), у отдельных РНК обнаружена собственная ферментативная активность: способность вносить разрывы в другие молекулы РНК или, наоборот, «склеивать» два РНК-фрагмента. Такие РНК называются рибозимами.

Геномы ряда вирусов состоят из РНК, то есть у них она играет роль, которую у высших организмов выполняет ДНК. На основании разнообразия функций РНК в клетке была выдвинута гипотеза, согласно которой РНК — первая молекула, которая была способна к самовоспроизведению в добиологических системах.

Содержание

История изучения

Нуклеиновые кислоты были открыты в 1868 году швейцарским учёным Иоганном Фридрихом Мишером, который назвал эти вещества «нуклеин», поскольку они были обнаружены в ядре (лат. nucleus)[1]. Позже было обнаружено, что бактериальные клетки, в которых нет ядра, тоже содержат нуклеиновые кислоты. Значение РНК в синтезе белков было предположено в 1939 году в работе Торбьёрна Оскара Касперссона, Жана Брачета и Джека Шульца.[2] Джерард Маирбакс выделил первую матричную РНК, кодирующую гемоглобин кролика и показал, что при её введении в ооциты образуется тот же самый белок.[3] В 1956—1957 годах проводились работы (А. Белозёрский, А. Спирин, Э. Волкин, Л. Астрахан) по определению состава РНК клеток, которые привели к выводу, что основную массу РНК в клетке составляет рибосомальная РНК.[4] Северо Очоа получил Нобелевскую премию по медицине в 1959 году за открытие механизма синтеза РНК.[5] Последовательность 77 нуклеотидов одной из тРНК дрожжей S. cerevisiae была определена в 1965 году в лаборатории Роберта Холея, за что в 1968 году он получил Нобелевскую премию по медицине.[6] В 1967 Карл Вёзе предположил, что РНК обладают каталитическими свойствами. Он выдвинул так называемую Гипотезу РНК-мира, в котором РНК прото-организмов служила и в качестве молекулы хранения информации (сейчас эта роль выполняется в основном ДНК) и молекулы, которая катализировала метаболические реакции (сейчас это делают в основном ферменты).[7] В 1976 Уолтер Фаэрс и его группа в Гентском Университете (Голландия) определили первую последовательность генома РНК-содержащего вируса, бактериофага MS2.[8] В начале 1990-х было обнаружено, что введение чужеродных генов в геном растений приводит к подавлению выражения аналогичных генов растения.[9] Приблизительно в это же время было показано, что РНК длиной около 22 оснований, которые сейчас называются микроРНК, играют регуляторную роль в онтогенезе нематод C. elegans.[10]

Химический состав и модификации мономеров

Химическое строение полинуклеотида РНК

Нуклеотиды РНК состоят из сахара — рибозы, к которой в положении 1' присоединено одно из оснований: аденин, гуанин, цитозин или урацил. Фосфатная группа соединяет рибозы в цепочку, образуя связи с 3' атомом углерода одной рибозы и в 5' положении другой. Фосфатные группы при физиологическом рН отрицательно заряжены, поэтому РНК — полианион. РНК транскрибируется как полимер четырёх оснований (аденина (A), гуанина (G), урацила (U) и цитозина (C), но в «зрелой» РНК есть много модифицированных оснований и сахаров[11]. Всего в РНК насчитывается около 100 разных видов модифицированных нуклеотидов, из которых 2'-О-метилрибоза наиболее частая модификация сахара, а псевдоуридин — наиболее часто встречающееся модифицированное основание[12].

У псевдоуридина (Ψ) связь между урацилом и рибозой не C — N, а C — C, этот нуклеотид встречается в разных положениях в молекулах РНК. В частности, псевдоуридин важен для функционирования тРНК[13]. Другое заслуживающее внимания модифицированное основание — гипоксантин, деаминированный гуанин, нуклеозид которого носит название инозина. Инозин играет важную роль в обеспечении вырожденности генетического кода.

Роль многих других модификаций не до конца изучена, но в рибосомальной РНК многие пост-транскрипционные модификации находятся в важных для функционирования рибосомы участках. Например, на одном из рибонуклеотидов, участвующем в образовании пептидной связи[14].

Структура

Азотистые основания в составе РНК могут образовывать водородные связи между цитозином и гуанином, аденином и урацилом, а также между гуанином и урацилом[15]. Однако возможны и другие взаимодействия, например, несколько аденинов могут образовывать петлю, или петля, состоящая из четырёх нуклеотидов, в которой есть пара оснований аденин — гуанин[16].

Разные формы нуклеиновых кислот. На рисунке (слева направо) представлены A (типична для РНК), B (ДНК) и Z (редкая форма ДНК)

Важная структурная особенность РНК, отличающая её от ДНК — наличие гидроксильной группы в 2' положении рибозы, которая позволяет молекуле РНК существовать в А, а не В-конформации, наиболее часто наблюдаемой у ДНК[17]. У А-формы глубокая и узкая большая бороздка и неглубокая и широкая малая бороздка[18]. Второе последствие наличия 2' гидроксильной группы состоит в том, что конформационно пластичные, то есть не принимающие участие в образовании двойной спирали, участки молекулы РНК могут химически атаковать другие фосфатные связи и их расщеплять[19].

Вторичная структура РНК-компонента теломеразы простейших

«Рабочая» форма одноцепочечной молекулы РНК, как и у белков, часто обладает третичной структурой. Третичная структура образуется на основе элементов вторичной структуры, образуемой с помощью водородных связей внутри одной молекулы. Различают несколько типов элементов вторичной структуры — стебель-петли, петли и псевдоузлы[20]. В силу большого числа возможных вариантов спаривания оснований предсказание вторичной структуры РНК — гораздо более сложная задача, чем предсказание вторичной структуры белков, но в настоящее время есть эффективные программы, например, mfold[21].

Примером зависимости функции молекул РНК от их вторичной структуры являются участки внутренней посадки рибосомы (IRES). IRES — структура на 5' конце информационной РНК, которая обеспечивает присоединение рибосомы в обход обычного механизма инициации синтеза белка, требующего наличия особого модифицированного основания (кэпа) на 5' конце и белковых факторов инициации. Первоначально IRES были обнаружены в вирусных РНК, но сейчас накапливается всё больше данных о том, что клеточные мРНК также используют IRES-зависимый механизм инициации в условиях стресса[22].

Многие типы РНК, например, рРНК и мяРНК в клетке функционируют в виде комплексов с белками, которые ассоциируют с молекулами РНК после их синтеза или (у эукариот) экспорта из ядра в цитоплазму. Такие РНК-белковые комплексы называются рибонуклеопротеиновыми комплексами или рибонуклеопротеидами.

Сравнение с ДНК

Между ДНК и РНК есть три основных отличия:

  1. ДНК содержит сахар дезоксирибозу, РНК — рибозу, у которой есть дополнительная, по сравнению с дезоксирибозой, гидроксильная группа. Эта группа увеличивает вероятность гидролиза молекулы, то есть уменьшает стабильность молекулы РНК.
  2. Нуклеотид, комплементарный аденину, в РНК не тимин, как в ДНК, а урацил — неметилированная форма тимина.
  3. ДНК существует в форме двойной спирали, состоящей из двух отдельных молекул. Молекулы РНК, в среднем, гораздо короче и преимущественно одноцепочечные.

Структурный анализ биологически активных молекул РНК, включая тРНК, рРНК, мяРНК и другие молекулы, которые не кодируют белков, показал, что они состоят не из одной длинной спирали, а из многочисленных коротких спиралей, расположенных близко друг к другу и образующих нечто, похожее на третичную структуру белка. В результате этого РНК может катализировать химические реакции, например, пептидил-трансферазный центр рибосомы, участвующий в образовании пептидной связи белков, полностью состоит из РНК[23][24].

Синтез

Синтез РНК в живой клетке проводится ферментом — РНК-полимеразой. У эукариот разные типы РНК синтезируются разными, специализированными РНК-полимеразами. В целом матрицей синтеза РНК может выступать как ДНК, так и другая молекула РНК. Например, полиовирусы используют РНК-зависимую РНК-полимеразу для репликации своего генетического материала, состоящего из РНК[25]. Но РНК-зависимый синтез РНК, который раньше считался характерным только для вирусов, происходит и в клеточных организмах, в процессе так называемой РНК-интерференции[26].

Как в случае ДНК-зависимой РНК-полимеразы, так и в случае РНК-зависимой РНК-полимеразы фермент присоединяется к промоторной последовательности. Вторичная структура молекулы матрицы расплетается с помощью хеликазной активности полимеразы, которая при движении субстрата в направлении от 3' к 5' концу молекулы синтезирует РНК в направлении 5' → 3'. Терминатор транскрипции в исходной молекуле определяет окончание синтеза. Многие молекулы РНК синтезируются в качестве молекул-предшественников, которые подвергаются «редактированию» — удалению ненужных частей с помощью РНК-белковых комплексов[27].

Например, у кишечной палочки гены рРНК расположены в составе одного оперона (в rrnB порядок расположения такой: 16S — tRNAGlu 2 — 23S —5S) считываются в виде одной длинной молекулы, которая затем подвергается расщеплению в нескольких участках с образованием сначала пре-рРНК, а затем зрелых молекул рРНК[28]. Процесс изменения нуклеотидной последовательности РНК после синтеза носит название процессинга или редактирования РНК.

После завершения транскрипции РНК часто подвергается модификациям (см. выше), которые зависят от функции, выполняемой данной молекулой. У эукариот процесс «созревания» РНК, то есть её подготовки к синтезу белка, часто включает сплайсинг: удаление некодирующих белок последовательностей (интронов) с помощью рибонуклеопротеида сплайсосомы. Затем к 5' концу молекулы пре-мРНК эукариот добавляется особый модифицированный нуклеотид (кэп), а к 3' концу несколько аденинов, так назваемый «полиА-хвост»[27].

Типы РНК

Структура молоточкового (hammerhead) рибозима, который расщепляет РНК

Матричная (информационная) РНК — РНК, которая служит посредником при передаче информации, закодированной в ДНК к рибосомам, молекулярным машинам, синтезирующим белки живого организма. Кодирующая последовательность мРНК определяет последовательность аминокислот полипептидной цепи белка[29]. Однако подавляющее большинство РНК не кодируют белок. Эти некодирующие РНК могут транскрибироваться с отдельных генов (например, рибосомальные РНК) или быть производными интронов[30]. Классические, хорошо изученные типы некодирующих РНК — это транспортные РНК (тРНК) и рРНК, которые участвуют в процессе трансляции[31]. Существуют также классы РНК, ответственные за регуляцию генов, процессинг мРНК и другие роли. Кроме того, есть и молекулы некодирующих РНК, способные катализировать химические реакции, такие, как разрезание и лигирование молекул РНК[32]. По аналогии с белками, способными катализировать химические реакции — энзимами (ферментами), каталитические молекулы РНК называются рибозимами.

Участвующие в трансляции

Роль разных типов РНК в синтезе белка (по Уотсону)

Информация о последовательности аминокислот белка содержится в мРНК. Три последовательных нуклеотида (кодон) соответствуют одной аминокислоте. В эукариотических клетках транскирибированный предшественник мРНК или пре-мРНК процессируется с образованием зрелой мРНК. Процессинг включает удаление некодирующих белок последовательностей (интронов). После этого мРНК экспортируется из ядра в цитоплазму, где к ней присоединяются рибосомы, транслирующие мРНК с помощью соединённых с аминокислотами тРНК.

В безъядерных клетках (бактерии и археи) рибосомы могут присоединяться к мРНК сразу после транскрипции участка РНК. И у эукариот, и у прокариот цикл жизни мРНК завершается её контролируемым разрушением ферментами рибонуклеазами[29].

Транспортные (тРНК) — малые, состоящие из приблизительно 80 нуклеотидов, молекулы с консервативной третичной структурой. Они переносят специфические аминокислоты в место синтеза пептидной связи в рибосоме. Каждая тРНК содержит участок для присоединения аминокислоты и антикодон для узнавания и присоединения к кодонам мРНК. Антикодон образует водородные связи с кодоном, что помещает тРНК в положение, способствующее образованию пептидной связи между последней аминокислотой образованного пептида и аминокислотой, присоединённой к тРНК[30].

Рибосомальные РНК (рРНК) — каталитическая составляющая рибосом. Эукариотические рибосомы содержат четыре типа молекул рРНК: 18S, 5.8S, 28S и 5S. Три из четырёх типов рРНК синтезируются в ядрышке. В цитоплазме рибосомальные РНК соединяются с рибосомальными белками и формируют нуклеопротеин, называемый рибосомой[29]. Рибосома присоединяется к мРНК и синтезирует белок. рРНК составляет до 80 % РНК, обнаруживаемой в цитоплазме эукариотической клетки[33].

Необычный тип РНК, который действует в качестве тРНК и мРНК (тмРНК) обнаружен во многих бактериях и пластидах. При остановке рибосомы на дефектных мРНК без стоп-кодонов тмРНК присоединяет небольшой пептид, направляющий белок на деградацию[34].

Участвующие в регуляции генов

В живых клетках обнаружено несколько типов РНК, которые могут уменьшать степень выражения гена при комплементарности мРНК или самому гену. Микро-РНК (21-22 нуклеотида в длину) найдены у эукариот и оказывают воздействие через механизм РНК-интерференции. При этом комплекс микро-РНК и ферментов может приводить к метилированию нуклеотидов в ДНК промотора гена, что служит сигналом для уменьшения активности гена. При использовании другого типа регуляции мРНК, комплементарная микро-РНК, деградируется.[35]. Однако есть и миРНК, которые увеличивают, а не уменьшают экспрессию генов.[36]. Малые интерферирующие РНК (миРНК, 20-25 нуклеотидов) часто образуются в результате расщепления вирусных РНК, но существуют и эндогенные клеточные миРНК[37]. Малые интерферирующие РНК также действуют через РНК-интерференцию по сходным с микро-РНК механизмам[38]. У животных найдены так называемыме РНК, взаимодействующие с Piwi (piRNA, 29-30 нуклеотидов), действующие в половых клетках против транспозиции и играющие роль в образовании гамет[39][40]. Кроме того, piRNA могут эпигенетически наследоваться по материнской линии, передавая потомству своё свойство ингибировать экспрессию транспозонов[41].

Антисмысловые РНК широко распространены у бактерий, многие из них подавляют выражение генов, но некоторые активируют экспрессию[42]. Действуют антисмысловые РНК, присоединяясь к мРНК, что приводит к образованию двуцепочечных молекул РНК, которые деградируются ферментами.[43]. У эукариот обнаружены высокомолекулярные, мРНК-подобные молекулы РНК. Эти молекулы также регулируют выражение генов,[44]. В качестве примера можно привести Xist, присоединяющуюся и инактивирующую одну из двух Х-хромосом у самок млекопитающих.[45].

Кроме роли отдельных молекул в регуляции генов, регуляторные элементы могут формироваться в 5' и 3' нетранслируемых участках мРНК. Эти элементы могут действовать самостоятельно, предотвращая инициацию трансляции, либо присоединять белки, например, ферритин или малые молекулы, например, биотин.[46].

В процессинге РНК

Многие РНК принимают участие в модификации других РНК. Интроны вырезаются из пре-мРНК сплайсосомами, которые, кроме белков, содержат несколько малых ядерных РНК (мяРНК)[31]. Кроме того, интроны могут катализировать собственное вырезание[47]. Синтезированая в результате транскрипции РНК также может быть химически модифицирована. У эукариот химические модификации нуклеотидов РНК, например, их метилирование, выполняется малыми ядерными РНК (мяРНК, 60-300 нуклеотидов). Этот тип РНК локализуется в ядрышко и тельцах Кахаля[30]. После ассоциации мяРНК с ферментами, мяРНК связываются с РНК-мишенью путём образования пар между основаниями двух молекул, а ферменты модифицируют нуклеотиды РНК-мишени. Рибосомальные и транспортные РНК содержат много подобных модификаций, конкретное положение которых часто сохраняется в процессе эволюции. Также могут быть модифицированы мяРНК и сами мяРНК[48][49] Гидовые РНК осуществляют процесс редактирования РНК в кинетопласте — особом участке митохондрии протистов-кинетопластид (например, трипаносом).

Геномы, состоящие из РНК

Жизненный цикл вируса с РНК геномом на примере полиовируса: 1 — присоединение исходного вириона к рецептору; 2 — вирион попадает в клетку; 3 — трансляция белков вируса с его РНК с образованием полипетида; 4 — полимеразы вируса размножают его РНК

Как и ДНК, РНК может хранить информацию о биологических процессах. РНК может использоваться в качестве генома вирусов и вирусоподобных частиц. РНК-геномы можно разделить на те, которые не имеют промежуточной стадии ДНК и те, которые для размножения копируются в ДНК-копию и обратно в РНК (ретровирусы).

РНК-содержащие вирусы

Многие вирусы, например, вирус гриппа, на всех стадиях содержат геном, состоящий исключительно из РНК. РНК содержится внутри обычно белковой оболочки и реплицируется с помощью закодированных в ней РНК-зависимых РНК-полимераз. Вирусные геномы, состоящие из РНК разделяются на

  • содержащие «плюс-цепь РНК», которая используется в качестве и мРНК, и генома;
  • «минус-цепь РНК», которая служит только геномом, а в качестве мРНК используется комплементарная ей молекула;
  • двухцепоченые вирусы.

Вироиды — другая группа патогенов, содержащих РНК-геном и не содержащих белок. Они реплицируются РНК-полимеразами организма хозяина[50].

Ретровирусы и ретротранспозоны

У других вирусов РНК-геном есть в течение только одной из фаз жизненного цикла. Вирионы так называемых ретровирусов содержат молекулы РНК, которые при попадании в клетки хозяина служат матрицей для синтеза ДНК-копии. В свою очередь, с матрицы ДНК считывается РНК-геном. Кроме вирусов обратную транскрипции применяют и класс мобильных элементов генома — ретротранспозоны[51]

Гипотеза РНК-мира

Способность молекул РНК одновременно служить как в качестве носителя информации, так и в качестве катализатора химических реакций, позволила выдвинуть гипотезу о том, что РНК была первым сложным полимером, появившимся в процессе добиологической эволюции. Эта гипотеза названа «гипотеза РНК-мира»[52][53]. Согласно ей, РНК на первых этапах эволюции автокатализировала синтез других молекул РНК, а затем и ДНК. На втором этапе эволюции синтезированные молекулы ДНК, как более стабильные, стали хранилищем генетической информации. Синтез белка на матрице РНК с помощью пра-рибосом, полностью состоящих из РНК, расширил свойства добиологических систем, постепенно белок заменил РНК в структурных аспектах. Из этой гипотезы делается вывод, что многие РНК, принимающие участие в синтезе белка в современных клетках, в особенности рРНК и тРНК — это реликты РНК-мира.

См. также

Примечания

  1. Dahm R (2005). «Friedrich Miescher and the discovery of DNA». Developmental Biology 278 (2): 274–88. PMID 15680349.
  2. Nierhaus KH, Wilson DN. Protein Synthesis and Ribosome Structure. — Wiley-VCH, 2004. — С. 3. — ISBN 3-527-30638-2
  3. L’ADN, cette «simple» molécule. Esprit libre (июнь 2003). Архивировано из первоисточника 23 августа 2011. Проверено ???.
  4. А. С. Спирин. Биоорганическая химия. — М.: Высшая школа, 1986. — С. 10.
  5. Enzymatic synthesis of ribonucleic acid. Nobel Lecture (1959). Архивировано из первоисточника 23 августа 2011. Проверено ???.
  6. 10.1126/science.147.3664.1462
  7. 10.1016/S0168-9525(99)01730-8
  8. Fiers W et al. Complete nucleotide-sequence of bacteriophage MS2-RNA: primary and secondary structure of replicase gene // Nature. — 1976. — Vol. 260. — P. 500–7. — PMID 1264203.
  9. Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. // Plant Cell. — 1990. — Vol. 2. — № 4. — P. 279–89. — PMID 12354959.
  10. 10.1126/science.1066315
  11. Jankowski JAZ, Polak JM Clinical gene analysis and manipulation: tools, techniques and troubleshooting. — Cambridge University Press. — P. 14. — ISBN 0521478960
  12. 10.1093/emboj/20.14.3617.
  13. 10.1128/JVI.75.10.4902-4906.2001.
  14. 10.1016/S1097-2765(03)00040-6.
  15. Barciszewski J, Frederic B, Clark C RNA biochemistry and biotechnology. — Springer. — P. 73–87. — ISBN 0792358627
  16. 10.1016/j.jmb.2004.09.072. PMID 15561141.
  17. Salazar M, Fedoroff OY, Miller JM, Ribeiro NS, Reid BR (1992). «The DNA strand in DNAoRNA hybrid duplexes is neither B-form nor A-form in solution». Biochemistry 1993 (32): 4207–15. PMID 7682844.
  18. 10.1016/S0969-2126(00)00110-6.
  19. 10.1039/a903691a.
  20. 10.1073/pnas.0401799101.
  21. Redirect
  22. Spriggs KA, Stoneley M, Bushell M, Willis AE. (2008). «Re-programming of translation following cell stress allows IRES-mediated translation to predominate». Biol Cell. 100 (1): 27–38.
  23. 10.1017/S0033583500003620.
  24. 10.1126/science.289.5481.920.
  25. 10.1016/S0969-2126(97)00261-X.
  26. 10.1126/science.1069132.
  27. ↑ Molecular Biology of the Cell; Fourth Edition. — New York and London: Garland Science. — P. 302–303. — ISBN ISBN 0-8153-3218-1
  28. Wagner R., Theissen G., Zacharias Regulation of Ribosomal RNA synthesis and Control of ribosome Formation in E.coli. — 1993. — P. 119–129.
  29. 1 2 3 Cooper GC, Hausman RE The Cell: A Molecular Approach. — 3rd edition. — Sinauer. — P. 261–76, 297, 339–44. — ISBN 0-87893-214-3
  30. ↑ Mining the transcriptome – methods and applications. — ISBN 91-7178-436-5
  31. 1 2 Berg JM, Tymoczko JL, Stryer L Biochemistry. — 5th edition. — WH Freeman and Company, 2002. — P. 118–19, 781–808. — ISBN 0-7167-4684-0
  32. 10.1016/j.chembiol.2004.07.002.
  33. Kampers T, Friedhoff P, Biernat J, Mandelkow E-M, Mandelkow E (1996). «RNA stimulates aggregation of microtubule-associated protein tau into Alzheimer-like paired helical filaments». FEBS Letters 399: 98–100, 344–49. PMID 8985176.
  34. 10.1093/nar/gkh102. PMID 14681369.
  35. 10.1371/journal.pbio.0020133. PMID 15138502.
  36. 10.1038/448855a. PMID 17713502.
  37. 10.1016/j.molcel.2004.09.028. PMID 15469823.
  38. RNAi – Is one suffix sufficient?». Journal of RNAi and Gene Silencing 3 (1): 217–19.
  39. 10.1016/j.cub.2007.06.030. PMID 17604629.
  40. 10.1038/nature04917. PMID 16751776.
  41. 10.1126/science.1165171. PMID 19039138.
  42. Wagner EG, Altuvia S, Romby P (2002). «Antisense RNAs in bacteria and their genetic elements». Adv Genet. 46: 361–98. PMID 11931231.
  43. Gilbert SF Developmental Biology. — 7th ed. — Sinauer, 2003. — P. 101–3. — ISBN 0878932585
  44. 10.1016/j.tig.2005.03.007. PMID 15851066.
  45. 10.1073/pnas.96.12.6841. PMID 10359800.
  46. 10.1016/j.sbi.2006.05.001. PMID 16707260.
  47. 10.1073/pnas.90.14.6498. PMID 8341661.
  48. 10.1038/341662a0. PMID 2552326.
  49. 10.1046/j.1365-2958.2003.03483.x. PMID 12694609.
  50. 10.1038/sj.embor.7400706. PMID 16741503.
  51. 10.1534/genetics.166.3.1437. PMID 15082561.
  52. 10.1038/319618a0.
  53. Woese Carl The Genetic Code. — Harper & Row, 1968. — ISBN 978-0060471767

Литература

  • Альбертс Б.; Брей Д.; Льюис Дж. и др. Молекулярная биология клетки в 3-х томах. — М.: Мир, 1994. — 1558 с. — ISBN 5-03-001986-3
  • История биологии с начала XX века до наших дней. — М.: Наука, 1975. — 660 с.
  • Льюин Б. Гены. — М.: Мир, 1987. — 544 с.
  • Спирин А. С. Биосинтез белков, мир РНК и происхождение жизни
  • Molecular Biology Of The Cell, 4е издание, 2002 г. — учебник по молекулярной биологии на английском языке

Ссылки

  • Предсказание вторичной структуры РНК (англ.)
  • База данных геномных тРНК (англ.)
  • База данных псевдоузлов (англ.)
  • Химики преодолели главное препятствие на пути к абиогенному синтезу РНК

Рибонуклеиновые кислоты.

© 2020–2023 lt304888.ru, Россия, Волжский, ул. Больничная 49, +7 (8443) 85-29-01